Maximum flows and minimum cuts in the plane
نویسنده
چکیده
A continuous maximum flow problem finds the largest t such that div v = t F (x, y) is possible with a capacity constraint ‖(v1, v2)‖ ≤ c(x, y). The dual problem finds a minimum cut ∂S which is filled to capacity by the flow through it. This model problem has found increasing application in medical imaging, and the theory continues to develop (along with new algorithms). Remaining difficulties include explicit streamlines for the maximum flow, and constraints that are analogous to a directed graph.
منابع مشابه
Improved Minimum Cuts and Maximum Flows in Undirected Planar Graphs
In this paper we study minimum cut and maximum flow problems on planar graphs, both in static and in dynamic settings. First, we present an algorithm that given an undirected planar graph computes the minimum cut between any two given vertices in O(n log logn) time. Second, we show how to achieve the same O(n log logn) bound for the problem of computing maximum flows in undirected planar graphs...
متن کاملCuts in Directed Planar Networks by Parallel C Omput at Ions
We reduce the exponent to 3 in the case when the network is embedded in the plane beforehand and to 4 otherwise. The reader is supposed to be familiar with graphs, planar graphs, multigraphs and so on (see [1]). We use the well-known method in a similar way as in [4] which consists in the fact that the problem of finding minimum cuts in a network can be reduced to the shortest path problem in i...
متن کاملRandomized Approximation Schemes for Cuts and Flows in Capacitated Graphs
We improve on random sampling techniques for approximately solving problems that involve cuts and flows in graphs. We give a near-linear-time construction that transforms any graph on vertices into an -edge graph on the same vertices whose cuts have approximately the same value as the original graph’s. In this new graph, for example, we can run the -time maximum flow algorithm of Goldberg and...
متن کاملMinimum Cuts and Shortest Cycles in Directed Planar Graphs via Noncrossing Shortest Paths
Let G be an n-node simple directed planar graph with nonnegative edge weights. We study the fundamental problems of computing (1) a global cut of Gwith minimum weight and (2) a cycle of G with minimum weight. The best previously known algorithm for the former problem, running in O(n log n) time, can be obtained from the algorithm of Łącki, Nussbaum, Sankowski, and Wulff-Nilsen for single-source...
متن کاملA Simultaneous Parametric Maximum-Flow Algorithm for Finding the Complete Chain of Solutions
A Simultaneous Parametric Maximum-flow (SPM) algorithm finds the maximum-flow and a min-cut of a bipartite parametric maximum-flow network simultaneously for all values of parameter . λ Instead of working with the original parametric network, a new network is derived from the original and the SPM gives a particular state of the flows in the derived network, from which the nested min-cuts under ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Global Optimization
دوره 47 شماره
صفحات -
تاریخ انتشار 2010